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Abstract 9 

Automatic preferences can influence a decision maker’s choice before any relevant or 10 

meaningful information is available. We account for this element of human cognition in a 11 

computational model of problem solving that involves active trial and error and show that 12 

automatic biases are not just a beneficial or detrimental property: they are a tool that, if properly 13 

managed over time, can give rise to superior performance. In particular, automatic preferences 14 

are beneficial early on and detrimental at later stages. What is more, additional value can be 15 

generated by a timely rebiasing, i.e. a calculated reversal of the initial automatic preference. 16 

Remarkably, rebiasing can dominate not only debiasing (i.e., eliminating the bias) but also 17 

continuously unbiased decision making. This research contributes to the debate on the 18 

adaptiveness of automatic and intuitive biases, which has centered primarily on one-shot 19 

controlled laboratory experiments, by simulating outcomes across extended time spans. We also 20 

illustrate the value of the novel intervention of adopting the opposite automatic preference—21 

something organizations can readily achieve by changing key decision makers—as opposed to 22 

attempting to correct for or simply accepting the ubiquity of such biases. 23 

1 Introduction 24 

Decision making in organizations is prone to the effects of intuitive thinking, most notably biases 25 

(Kahmenan, 2003; Khatri & Ng, 2000; Miller & Ireland, 2005). Existing work in the 26 

organizational sciences and social-cognitive psychology often focuses on debiasing 27 

interventions, in other words strategies to remove automatic biases from organizational choices 28 

(Christensen & Knudsen, 2010; Schwenk, 1986; Wilson & Brekke, 1994; Winter, Cattani, & 29 

Dorsch, 2007). However, we show that dynamically rebiasing—that is, reversing biases by 30 

periodically adopting the opposite automatic preference—can be a strictly dominant strategy. To 31 

do so, we extend the standard model of boundedly rational search with a first principle of biased 32 

decision-making—namely, the presence of spontaneous, intuitive thinking. 33 

Social-cognitive psychology has highlighted the layered nature of the human mind, where 34 

decision making involves the functioning of both controlled (System 2) and automatic (System 35 

1) processes (Evans, 2008; Evans & Stanovich, 2013; Newell & Simon, 2007; Simon, 1990; 36 

mailto:ak.si@cbs.dk
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Sloman, 1996; Stanovich & West, 2000). The former is the kind of thought process that comes 37 

with an effort: it is deliberate, slow, and self-aware. The latter, conversely, is the kind of thinking 38 

that we can only barely control or shape logically: it is fast, associative, and effortless (Stanovich 39 

& West, 2000). This intuitive component represents an important element of human judgment. 40 

Even in organizations, decision makers routinely call on their intuitions or “gut feelings” when 41 

making both day-to-day and long term strategic choices (Khatri & Ng, 2000; Miller & Ireland, 42 

2005). But the effect of intuitive thinking on organizational choices is not always positive and 43 

indeed can be detrimental (Inbar, Cone, & Gilovich, 2010; Kahneman, 2003). This has to do with 44 

the fact that a key aspect of effortless information processing is our ability or propensity to make 45 

automatic evaluations before perceiving complete or even meaningful information (Duckworth, 46 

Bargh, Chaiken, & Chaiken, 2002; Kahneman, 2003; Volz & von Cramon, 2006; Wilson & 47 

Brekke, 1994; Zajonc, 1980). Naturally, such reliance on arbitrary, immediately observable 48 

stimuli often results in biases, or deviations from what would be deemed appropriate by the more 49 

logical rules of System 2 (Kahneman, 2003). 50 

Biased judgments are commonplace and have been documented in a wide spectrum of settings 51 

(e.g. Kramer, Newton, & Pommerenke, 1993; Nickerson, 1998; Raghubir & Valenzuela, 2006; 52 

Scott & Brown, 2006; Stone, 1994). However, despite their definitional conflict with the rule of 53 

logic in observable outcomes, beyond the scope of a single choice, biases may be beneficial 54 

(Arkes, 1991; Marshall, Trimmer, Houston, & McNamara, 2013). Cognitive processes of System 55 

1 generate responses so efficiently that the organisms possessing them can have evolutionary 56 

advantages (Gigerenzer & Todd, 1999). Similarly, such responses may reflect the properties of 57 

the environments in which our intelligence has evolved (e.g. Johnson & Fowler, 2011; Haselton 58 

& Nettle, 2006). If a certain behavioral response confers propagation or survival advantages, it is 59 

more likely to be prevalent in the population long-term (Haselton & Nettle, 2006). Consequently, 60 

the positive effects of our less controlled cognitive processes and corresponding biases may only 61 

emerge over a sequence of choices and would not be captured in single-session experiments in 62 

laboratory settings.    63 

Guided by this premise, we conjecture that positive or negative effects of cognitive 64 

manipulations (such as eliminating or altering biases) should likewise manifest themselves over a 65 

sequence of adaptive choices. Accordingly, we design a computational model of adaptive 66 

sequential trial and error that incorporates the first principles of human thinking and thus allows 67 

for a study of temporal effects of System 1 biases as well as interventions to eliminate or alter 68 

them.  69 

We find that the consequences of biased judgments are indeed time-variant. System 1 automatic 70 

evaluations offer short-term benefits that will tend to propagate in dynamic environments that 71 

remain stable only for a limited time. However, these benefits quickly disappear, causing 72 

profound long-term harm. The reason for the observed pattern is that automatic evaluations 73 

constrain the space of options for trial and error (e.g., pick only green, no red), thereby 74 

suppressing experimentation. Further analysis of this effect reveals that manipulations of biases 75 

can offer advantages in settings with more available time. However, contrary to what may be 76 

expected, it is not debiasing (or eliminating the bias) that betters both biased and unbiased 77 

decision making, it is rebiasing (or reversing the bias). To be effective, rebiasing must take place 78 

at a calculated moment in time. An advantage, therefore, may come not from eliminating biases 79 
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but from effectively managing them. Unlike individuals, organizations can in principle reverse 80 

their biases by appointing different decision makers to key roles such as top leadership positions. 81 

2 Theoretical background 82 

Consider the following problem. A decision maker is faced with a set of options, each with a 83 

different payoff or score. These can represent monetary outcomes such as profit, or different 84 

measures of performance, for example, product quality, cost, or customer satisfaction. The goal 85 

is to discover options with greater scores (see, for example, Simon, 1955). 86 

For a flawless intelligence, a problem like this is trivial. An omnipotent mind would immediately 87 

select the best option. Assuming that there are no information processing constraints, the number 88 

of possibilities is finite, and there are no impediments to choice, such behavior is rational. 89 

Indeed, in some situations, this kind of intelligent choice is a good proxy of that of humans. 90 

Think, for example, about choosing the biggest apple on a plate. The color, size, and shape are 91 

all directly observable and the choosing of the most appealing apple is not a problem. Given 92 

comprehensible information about all options, we simply pick the best one. However, the 93 

situation changes when we cannot process the entire set of possibilities or face noisy signals. 94 

Finding the biggest apple in a loaded trailer will already reveal the limits of our capacities.  95 

In the middle of the last century, Herbert Simon postulated that in problems like the one above, 96 

human rationality is bounded (Simon, 1955, 1956). Instead of optimizing over the entire space of 97 

possibilities, we search and satisfice. That is, we sequentially generate and try new options until 98 

we find one that meets all essential criteria or as long as our outcomes are below aspirations 99 

(Simon, 1955; Lant, 1992; Levinthal & March, 1981). In other words, boundedly rational 100 

decision makers continuously search for better options. This model of decision making 101 

represents the kind of “behavior that is compatible with the access to information and the 102 

computational capacities that are actually possessed by organisms” (Simon, 1955, p. 99). 103 

However, while certainly compatible with a limited intelligence, including that of a human, the 104 

Simonian representation of problem solving is not specifically human (or more broadly, 105 

biological). In particular, it omits biases that are typical of human cognition (see Fiori, 2011). 106 

The existing literature identifies a wide spectrum of intuitive biases or spontaneous "response[s] 107 

because of mental processing that is unconscious or uncontrollable" (Wilson & Brekke, 1994, p. 108 

117). These biases systematically contaminate decision making, often without the person’s 109 

awareness of their influence. Indeed, such blindness to the rationale behind one's own choices 110 

reflects the complexity of human thought (Greenwald & Banaji, 1995; Haidt, 2001; Kahneman, 111 

Lovallo, & Sibony, 2011; Nisbett & Wilson, 1977).  112 

Extensive research in psychology indicates that human cognition involves the simultaneous 113 

functioning of two systems (Kahneman, 2003; Sloman, 1996). One system (System 1) is 114 

spontaneous, intuitive, uncontrolled, and fast—this system is based on the law of association. 115 

The other system (System 2) is deliberate, effortful and relatively slow—this system can be said 116 

to rely on the law of logic (Stanovich & West, 2000). However, the responses of these systems to 117 

exogenous stimuli do not always align. In situations in which System 1 dominates System 2 (e.g. 118 

limited time, high cognitive load, or when the choice is closer to perception than to deliberate 119 

assessment), the decision maker’s judgment is especially likely to deviate from the rules of logic 120 
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(Fazio, 2001). Although there are exceptions, such as expert intuition trained in repetitive and 121 

predictable settings—think about chess (Kahneman & Klein, 2009)—in real-world situations 122 

automatic evaluations will not always be "reasonable by the cooler criteria of reflective 123 

reasoning. In other words, the preferences of System 1 are not necessarily consistent with 124 

preferences of System 2" (Kahneman, 2003, p. 1463). This inconsistency can take multiple forms 125 

but fundamentally it reduces to an arbitrary preference for a certain, immediately observable or 126 

perceivable attribute of options (Duckworth et al., 2002; Fazio, 2001; Fazio et al., 1986; Slovic, 127 

Finucane, Peters, & MacGregor, 2002; Zajonc, 1980).  128 

Such preferences form as a part of automatic evaluations that do not require conscious reasoning 129 

and occur even when the stimuli are novel (Duckworth et al., 2002; Fazio, 2001; Fazio, et al. 130 

1986; Greenwald & Banaji, 1995; Zajonc, 1980). While these affective responses are variegated 131 

(Hutchinson & Gigerenzer, 2005), in the context of choice, they fundamentally reduce to a form 132 

of heuristic that accepts or rejects based on a certain immediately perceivable attribute of 133 

options. That is, “pick A, if A is” more readily accessible, more representative of a category, 134 

implies lesser losses, etc. 135 

To the extent that this immediately observable attribute is uncorrelated with the target criterion 136 

(i.e. the performance score, quality, cost, etc.), the ultimate choice will be subject to biases. 137 

Importantly, the presence of these biases is not uniform over all stages of the decision-making 138 

processes. Specifically, the greater the involvement of System 1, the more liable to biases the 139 

choice is. This happens because intuitive judgments originate "between the automatic parallel 140 

operations of perception and the controlled serial operations of reasoning" (Kahneman & 141 

Frederick, 2002, p. 50). Somewhere between perception and more deliberate processes of 142 

reasoning, a human-like intelligence will have a quick, spontaneous evaluative response that may 143 

direct the ultimate choice (Kahneman, 2003; Zajonc, 1980). 144 

Existing experimental studies have shown that biases appear in a wide variety of trivial choices 145 

(Tversky & Kahneman, 1974). A natural consequence is that biases permeate human and by 146 

extension organizational decision making. This, in turn, can hold implications for organizational 147 

performance. Accordingly, scholars have analyzed the role of biases from various organizational 148 

perspectives, from their effects on strategic decision making (Lyles & Thomas, 1988; Reitzig & 149 

Sorenson, 2013; Schwenk, 1984; Schwenk, 1986) to their implications for organizational 150 

adaptation (Denrell & March, 2001). However, in this stream of work, biases have been 151 

essentially equated with some form of evaluation imperfections and thus no different from 152 

systematic errors in deliberate decisions. The automatic, spontaneous nature of the underlying 153 

cognitive processes remains largely unintegrated with boundedly rational problem solving at the 154 

individual or organizational levels. This omission limits our understanding of how organizations 155 

can leverage the idiosyncrasies of human decision making. 156 

In the following section, we develop a parsimonious model of boundedly rational problem 157 

solving with unreasoned automatic evaluations (i.e. automatic biases). We then use this model to 158 

illustrate the temporal consequences of intervening to eliminate or change biases. Our work 159 

specifically assesses the effectiveness of two basic strategies that organizations can use to 160 

manipulate biases: de-biasing, or entirely eliminating a bias, and re-biasing, or adopting the exact 161 

opposite automatic preference, as well as their optimal timing. 162 
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3 Model setup and analyses 163 

Our model has two basic elements: (i) an unknown reality with N options, (ii) a process of search 164 

that proxies problem solving by a boundedly rational intelligence with automatic evaluations. 165 

Figure 1 illustrates these elements. 166 

3.1.1 Unknown reality 167 

Reality is represented by a set of options, S, where each option sn has two attributes. For a trivial 168 

example, consider a bucket of exotic fruits. Let’s call them karamzamsas. The first attribute, ξ, is 169 

an immediately perceivable property, e.g. size, color, smell, etc. of a karamzamsa. We assume 170 

this attribute to take on one of two values, 0 or 1, i.e. ξ ~ U{0, 1}. The second attribute, f, 171 

represents the true value of the option, e.g. taste, nutritional content, etc. Without loss of 172 

generality, we assume that this value is distributed normally, i.e. f(sn) ~ N(0, 1). The true value of 173 

each option is observable only upon trial. That is, to know how a karamzamsa tastes, we need to 174 

take a bite. 175 

3.1.2 Search with automatic evaluations 176 

Consistent with the first principles of bounded rationality, our agents sequentially generate and 177 

try new options. However, we consider that although able to try only a single option at a time, 178 

agents can perceive multiple possibilities simultaneously. This is a key distinctive element of our 179 

conceptualization: at every moment in time, agents simultaneously perceive multiple options, but 180 

can try or experience only a single one. Continuing our example with a bucket of karamzamsas, 181 

consider that these exotic fruits are small and we can hold several of them in one hand. So we 182 

grab a handful and then drop all but the one we want to taste. For a more practical analogy, think 183 

about serial entrepreneurs or startups that come up with various business ideas but implement 184 

only a single one at a time. For an analogy that closely maps onto the underlying assumptions, 185 

think about the many choices organizational executives make on a daily basis: appointing the 186 

right subordinates, selecting suppliers, discontinuing products, etc.1 In many ways, these 187 

decisions are logically equivalent to exotic fruits: there is a multitude of them and their value, 188 

like that of karamzamsas, becomes fully identified only upon trial. 189 

With this basic setup, we can understand the effect of biases that come with automatic 190 

evaluations. Unbiased agents will automatically select a random option. Think about a person 191 

who has never tried any fruit. This person will not be able to tell karamzamsas apart: a green 192 

karamzamsa looks just as good as a red one. On the contrary, a person who is fond of red apples, 193 

may automatically select red karamzamsas. Green karamzamsas are, of course, as good as red 194 

karamzamsas. But the person who likes red apples will tend to pick red karamzamsas. This is the 195 

logic of a biased agent, an agent with automatic evaluations who exhibits systematic preferences 196 

 

1 Combinations of these and similar decisions can be seen as locales on a rugged performance landscape (e.g. 

Levinthal, 1997; Rivkin, 2000). The idea in this line of work is simple: every (organizational) state is described as a 

collection of policies. States that differ by few policies are close to each other, whereas states that differ by many 

policies are distant. Naturally, correlation of performance tends to be higher for those states that are closer to each 

other and lower for those states that are far apart. On such a landscape, organizations tend to search within an 

immediate vicinity of the current state (see Simon, 1956; Levinthal, 1997). Our results are robust to such local 

adaptation on rugged performance landscapes simulated by means of the NK model (Kauffman, 1993; Kauffman & 

Levin, 1987; Rivkin, 2000). 
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for an irrelevant immediately observable attribute of options. Although in the case of 197 

karamzamsas, such a bias will likely quickly disappear as the agent learns about the true taste of 198 

these wonderful fruits, many real-world biases are hard to eradicate even given the agent’s full 199 

awareness (Wilson & Brekke, 1994). Such persistent biases in our automatic evaluations will 200 

interplay with our problem solving long-term. 201 

Similar to Jung, Bramson, Crano, Page, and Miller (2021) we illustrate the logic of the search 202 

process with an algorithm. However, our algorithm does not have a defined stopping point. This 203 

implies that the agents continuously adjust their aspirations and continue searching for better 204 

solutions. Figure 2 illustrates this algorithm and the distinction between the two categorical 205 

extremes, biased and unbiased search, in stricter terms. Unbiased search approximates problem 206 

solving of a bounded intelligence that has no automatic evaluations. Biased search is a proxy for 207 

a human-like intelligence that exhibits automatic evaluations. If the search is biased, the agents 208 

will effectively reject options based on the irrelevant criterion ξ every time they simultaneously 209 

perceive an option they prefer. 210 

The logic of the algorithm is as follows. Generate or perceive several options. If one of these 211 

options dominates other options in terms of the immediately observable criterion ξ, select this 212 

option for thorough consideration and trial. If the selected option has been tried before, disregard 213 

it and restart the process of search. If the selected option has not been tried before, try it and 214 

observe its performance. We measure performance as the value f(sn) of the currently accepted 215 

option. If the performance improves, i.e. if f(st) > f(st – 1), where t indicates the moment in time, 216 

accept this option, i.e. f(st), as a new status quo. If the performance declines, i.e. if f(st) < f(st – 1), 217 

continue to the next period and when it starts remember to return to the status quo, or the best 218 

option discovered thus far, i.e. f(st – 1). 219 

With this algorithm, we run a simulation model. In particular, we create a random set S of 100 220 

options,2 and assume that the agents sample options from this set with replacement. In every 221 

period, an agent generates two random alternatives from set S, picks one of the two generated 222 

options following the biased or unbiased process and then either tries this option or moves to the 223 

next period (see Figure 2). Our observations are averaged over at least 106 simulations. This 224 

amount of simulations ensures that the reported patterns are stable and reproduce with near 225 

certainty. Simulations were coded in Code::Blocks 16.01 in C++ programming language 226 

following C++ 11 ISO standard. The complete data and code are posted on the Open Science 227 

Framework at https://osf.io/sypn2/?view_only=1b00c0d2dc964bafadf10215bfca4743.  228 

Before we proceed to our observations, let us make some important clarifications and caveats. 229 

First, the process, where the tried option can be sampled repeatedly, proxies a situation with a 230 

multiplicity of similar choices that have the same performance. To see what this means in the 231 

context of organizational decision making, consider, for example, a situation where a company 232 

from the capital region of Denmark unsuccessfully expands to the rest of the country. If 233 

establishing operations in Aalborg was not successful then probably (for the sake of argument, 234 

consider that these two cities are sufficiently similar along the dimensions relevant for the 235 

organizational offer) it will also fail in Odense. Then, if after a failure in Aalborg, decision 236 

 

2 Recall that f(sn) ~ N(0, 1). 

https://osf.io/sypn2/?view_only=1b00c0d2dc964bafadf10215bfca4743
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makers come up with the idea of starting operations in Odense, they will effectively have 237 

generated the same option again. This, of course, is only a hypothetical illustrative example. 238 

Possibilities vary (e.g. smaller cities in Denmark like Roskilde or Ringsted may turn out to 239 

represent a different option). The logic of the model is, of course, agnostic to the exact criterion. 240 

Sampling with replacement captures only the idea that some similar options have the same 241 

performance and can be intuitively generated or perceived separately.  242 

Second, given the example above, a careful reader may wonder whether it is appropriate to 243 

compare an expansion to Aalborg in, for example, 2010 with an expansion to Odense in say 244 

2035. Probably not. In fact, it may be equally unjustified to compare Aalborg in 2010 and 245 

Aalborg in 2035. The social, environmental, market, and even political conditions may be 246 

completely unalike. For this reason, time is a critical variable in our analysis because we 247 

compare performance in solving a given problem. The problem, of course, remains the same as 248 

long as the set of options S is constant. A meaningful change in the composition of this set, 249 

however, will essentially mean that the agents start solving another problem and the clock should 250 

start anew. Evolution of the problem, i.e. a gradual change in the composition of the set S, is 251 

another possibility. In the interest of clarity, we leave these issues beyond the scope of the 252 

present study and focus on the temporal effects of automatic biases when solving a given 253 

problem. That is, our agents search a fixed set of possibilities S and we observe their 254 

performance over time, i.e. the number of sequential choices made. 255 

Finally, as any analytical tool, our model has boundary conditions. Our analysis captures a 256 

specific task environment designed to reflect the essential basics of many decision making 257 

situations. Although properties of this task environment are arguably general and sufficient for 258 

the following effects to hold in other contexts of interest, the characteristics and complexities of 259 

specific real-world situations may differ and the model does not necessarily bear on them. These 260 

properties of the model can be summarized as follows: each option is characterized by two 261 

variables, one of which is directly observable and the other requires at least partial testing; 262 

decision makers are biased with respect to the observable variable but have no bias with respect 263 

to the unobservable variable of interest; the bias with respect to the observable variable 264 

materializes before any testing of the observable variable can be performed; and the two 265 

variables do not correlate with each other. The more overlapping features between the real 266 

situation and the simulated one, the more the simulation is relevant. The core code for our 267 

analyses is publicly posted, and we encourage the scientific community to explore alternative 268 

parameters more closely aligned with their specific decision making environments of interest. 269 

3.2 The basic effect 270 

Figure 3 shows the relative effect of biased search. Positive (negative) values indicate that at the 271 

given moment in time, the biased agent has an advantage (disadvantage) over the unbiased agent. 272 

The value of zero means that biased and unbiased agents tend to have exactly the same 273 

performance. 274 

An immediate observation is that the effect of automatic evaluations is time-variant. System 1 275 

biases are beneficial in the short-term and yet harmful in the long run. Note that the model 276 

timings have no direct correspondence to real-world time. The model time is measured in terms 277 

of the number of steps or decisions made or, equivalently, the number of options considered for 278 
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trial. A few steps (decisions) into the process of search, automatic evaluations can generate better 279 

performance by up to ~0.12 scores or 27 percent of the absolute performance of unbiased agents. 280 

Note that the magnitude of the advantage in terms of percentage peaks earlier. Early in the 281 

process of search, the absolute performance is relatively low and thus, every additional score 282 

represents a greater portion. Consider that 65 steps into the process of search, the benefit of 283 

biased search equals 0.1192 scores or 11.4% of 1.045 scores gained at that point by the unbiased 284 

agent. On the contrary, 5 steps into the process of search, the benefit of biased search is only 285 

0.008163 scores. But in percentage terms, this represents 27.21% of 0.03 scores gained by the 286 

unbiased agent at that time. This advantage, however, is relatively short-lived. Already 187 steps 287 

into the process of search, biases become detrimental. Although the magnitude of this effect does 288 

not exceed 2.7 percent, it continues (albeit monotonically declining) until the problem is solved, 289 

at which point biased and unbiased agents find the best alternative and their performances 290 

converge. 291 

3.3 The mechanism  292 

To understand the reasons for the observed pattern, consider what happens as the agents search 293 

the set of possibilities S. Every time the agents try a new option, their expected performance is 0. 294 

Recall that since f(sn) ~ N(0, 1), E[f(sn)] = 0. The difference between their status quo and the 295 

expected performance is essentially the implicit cost of experimentation. As long as their 296 

performance is greater than 0, every time they try a new option, their performance will fall until 297 

they return to the status quo. However, sometimes it will rise and their new status quo will 298 

improve measurably. This is how the agents learn, i.e. increase their accumulated knowledge 299 

about the problem.  300 

Accordingly, the effect in Figure 3 is a product of two processes (see Figure 4). First, automatic 301 

evaluations direct agents to the options they prefer (i.e. are biased towards). As a result, a biased 302 

agent learns less, i.e. accumulated knowledge is lower, because it repeatedly draws from the 303 

same subset of possibilities. In contrast, an unbiased decision maker does not rely on automatic 304 

evaluations and therefore faces lower redundancies in learning.  305 

However, there is a second process. Learning about the problem requires experimentation, and 306 

experimentation is costly. Automatic evaluations make it less likely that the agents try new 307 

options and thereby regulate the excess of experimentation in the initial phase of problem 308 

solving. Early in the process of search, there is little knowledge about the set of possibilities S, 309 

which means that there are plenty of unknown options, each of which has an expected 310 

performance of 0. The probability of trying new options is very high during this time. Automatic 311 

evaluations reduce this probability and thereby increase the value from stability. Over time, this 312 

value declines as the agents learn about the problem. Past experience with a given option helps 313 

resolve uncertainty about its potential: agents know that such an option is inferior to their status 314 

quo and therefore need not try it.  315 

The curves in Figure 4 illustrate the dynamics of accumulated knowledge and the implicit cost of 316 

experimentation in relative terms, where zero means that there is no difference between biased 317 

and unbiased agents. The left panel shows the dynamics of accumulated knowledge. We measure 318 

accumulated knowledge as the score of the best option known to the agent. The right panel 319 
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shows the cost of experimentation. We measure the cost of experimentation as the probability of 320 

trying a new option. 321 

3.4 Rebiased and debiased search 322 

In our analyses above, we assumed that biases remain constant during the entire process of 323 

search. While this is often the case, biases need not persist unchanged. Automatic evaluations 324 

exhibit high degrees of variability across people, such that different individuals can have 325 

idiosyncratic and atypical biases (Baron, 2000; Fazio et al., 1986). This variability may be used 326 

to change biases without altering the encoded memory or association. Teams, organizations, and 327 

societies can replace key decision makers with others who are less biased or hold different 328 

biases. Case studies highlight instances in which companies have changed management teams 329 

and completely reversed their previous management practice orientations (see for example, 330 

Maddux, Williams, Swaab, & Betania, 2014). At the individual level, various psychological 331 

techniques, such as framing, may activate different automatic associations and thus elicit 332 

different automatic preferences or biases within the same person (Chong & Druckman, 2007; 333 

Kühberger, 1998). Scholars in psychology as well as industry practitioners have discussed an 334 

array of techniques that can abate the effect of biases, or debias, decision making (see Kahneman 335 

et al., 2011). Similarly, the literature in management has shown that organizations have structural 336 

means to manipulate and attempt to reduce bias in organizational decision making (see 337 

Christensen and Knudsen, 2010).  338 

Accordingly, we examine temporal implications of two interventions or manipulations of bias: 339 

rebiasing (changing the bias to its opposite), and debiasing (eliminating the bias entirely). We 340 

operationalize rebiasing as adopting the exact opposite of the initial bias, i.e. pick red instead of 341 

green, when previously the automatic preferences was green over red. Debiasing means the agent 342 

no longer relies on any irrelevant signal. Consider our example with the exotic fruit karamzamsa 343 

and suppose that this fruit comes in two colors: red and green. As before, both green and red 344 

karamzamsas are equally tasty. Then, if our decision maker prefers red apples, this decision 345 

maker will likely favor red karamzamsas. Rebiasing in this case would be to now have a decision 346 

maker who prefers green apples. By analogy, debiasing would mean having a decision maker 347 

who equally prefers red and green apples. We are agnostic as to the exact levers that 348 

organizations or collectives use to manipulate biases—whether they involve replacement of the 349 

key decision makers or implementation of other management practices—and focus solely on the 350 

outcomes of such strategic interventions. Our starting condition is that of the biased firm and its 351 

performance dynamics. Subsequently, we examine the temporal implications of rebiasing and 352 

debiasing. 353 

Figure 5 shows the effects of these manipulations. The curves show relative performance of 354 

debiased and rebiased search (cf. Figure 3). The value of zero indicates that the difference 355 

between unbiased and debiased or rebiased agents is nil. 356 

Contrary to what might be expected, debiasing does not result in simple convergence with 357 

unbiased search. Immediately after debiasing, there is a sharp decline in performance (see Figure 358 

5). This happens because the set of options that used to be intuitively discarded remains 359 

comparatively unknown. So, when the bias disappears, the likelihood of trying new options goes 360 

up, which in turn increases the cost of experimentation. However, since a large portion of the 361 
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possibilities are already encoded in the agent’s memory, an increase in experimentation does not 362 

provide a commensurate improvement in the best-known state. As the agents gradually discover 363 

superior options, this initial shock of debiasing fades out and the performance of the debiased 364 

search ultimately converges to that of the continuously unbiased search.  365 

In contrast, rebiasing leads to a second-order advantage. That is, after an initial drop in 366 

performance, rebiasing produces a temporary, but significant improvement in performance. A 367 

greater focus on the underexplored subset of the possibilities allows for a speeded accumulation 368 

of knowledge, which soon approaches that of the continuously unbiased search. As this happens, 369 

the implicit relative cost of experimentation declines and the agent takes advantage of the new 370 

bias. We call this effect a second-order advantage because it builds on the asymmetries in 371 

knowledge accumulation that were generated in the course of exercising the initial automatic 372 

bias. 373 

3.5 The Optimal Timing of Rebiasing 374 

Significant declines in relative performance may naturally cause the species and by extension 375 

their behaviors to go extinct, or the company to become bankrupt. However, if the challenge of 376 

survival is taken out of the picture, the net effect of volatility is not clear. In particular, short-377 

term losses can be seen as a form of investment for delayed gains. With this in mind, we 378 

compare the levels of cumulative scores of various behaviors (biased, unbiased, debiased, and 379 

rebiased search) over different time spans. Note that there is no real-world time in the model. 380 

Therefore, as a proxy of actual time we take the count of search iterations or steps. In other 381 

words, one iteration of generating and evaluating a pair of alternatives corresponds to one unit on 382 

the time scale.  383 

The curves in Figure 6 plot the relative cumulative performance of a given manipulation of 384 

biases. The value of zero indicates that the average accumulated performance of the unbiased 385 

and rebiased or debiased agents are equal. For example, a point on the solid black line (left 386 

panel) that coordinates approximately (50, 2.5) means that rebiasing at t = 50 in a setting with 387 

significant time pressure leads to the overall gain of approximately 2.5 performance scores over 388 

the entire period (T = 200). 389 

Figure 6 shows that rebiasing (and not debiasing) can be a superior intervention. With short or 390 

moderate time spans in a given setting (T = 500), agents benefit from periodically changing their 391 

biases. In other words, if human decision makers have a sufficiently limited time to solve a 392 

certain recombination problem, i.e. if they have relatively few trial attempts, rebiased search may 393 

be their optimal form of behavior.  394 

Strikingly, although debiasing occasionally outperforms rebiasing, it is never the dominant 395 

approach. Debiasing is always dominated either by continuously unbiased or by rebiased search. 396 

When it comes to recombination problems that involve active trial and errors, organizations 397 

should not seek to debias their decision makers. In fact, they may want to do the exact opposite 398 

and seek to rebias organizational decisions. This observation, unique to the present research, has 399 

important implications for how we manage human biases that originate in our less deliberate 400 

cognitive processes.  401 

4 Discussion 402 
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System 1 automatic evaluations are endemic to human mental functioning, and as some have 403 

argued may contribute to our intelligence. Yet because of them, our specific judgements are 404 

often deeply biased. Arbitrary signals activate our automatic preferences and make us gravitate 405 

towards some options even before we know how good or bad they truly are. This tendency may 406 

undermine the quality of any single choice. At the same time, it is so fast and effortless that over 407 

populations of choices it may prove to be useful and adaptive (e.g. Bernardo & Welch, 2001; 408 

Johnson & Fowler, 2011; Gigerenzer & Goldstein, 1996, Gigerenzer & Todd, 1999). Drawing on 409 

this prior work, we find that biases improve decision maker’s performance over a sequence of 410 

choices. As we illustrate, System 1 biases serve as a cognitive tool regulating excess 411 

experimentation, producing substantial benefits. Strikingly, this benefit of bias occurs even when 412 

there is no correlation between the variable of interest and the bias-generating variable. 413 

Automatic biases should be even more useful, and return value for longer, when they map 414 

closely onto environmental regularities (Gigerenzer & Todd, 1999). 415 

In and of itself, this effect parallels other evolutionary advantages. But when paired with our 416 

present-day self-awareness and psychological toolkit, it offers the possibility of uncovering value 417 

beyond that of survival. Changing a bias, including debiasing, comes with a major short-term 418 

penalty: there is an immediate and profound decline in expected performance. However, the 419 

immediate disadvantage of changing biases are outweighed by the long-run benefits. Contrary to 420 

what might be anticipated, we find that organizations can most benefit by periodically reversing 421 

the biases of their decision makers. In complex settings with limited available time, a dominant 422 

strategy can be to rebias, in other words to strategically shift the overall decision making bias to 423 

its precise opposite. This provides a novel perspective on managing biases as previous work in 424 

experimental settings has focused almost exclusively on debiasing: in other words the reduction, 425 

correction, and elimination of bias (e.g., Wilson & Brekke, 1994). The present analyses identify 426 

rebiasing as an unconsidered but highly effective strategy for organizations. The benefits of 427 

rebiasing, however, emerge only if decision makers reverse their biases at a calculated moment 428 

in time, when the benefits of the initial automatic preference are no longer materializing. 429 

Time is an essential variable in our analyses. First, we use time to show that biases in solving 430 

recombination problems that involve active trial and error are not uniformly negative or positive. 431 

In complex environments full of uncertainty, acting on automatic preferences is associated with 432 

short-term gains in performance and yet long-term costs. In addition, time can underlie an 433 

important variance in how effectively organizations manage biases. We show that biases should 434 

be managed, and time is a critical component in the effectiveness of this process. The optimal 435 

strategy may be to first leverage initial biases, and then engage in a timely rebiasing, adopting 436 

the exact opposite automatic preference. Our work thus answers calls to explore the role of 437 

intuition and affect in decision making over time (see George & Dane, 2016). Via the 438 

computational experiments used in the present research, we can point to the plausibility of 439 

phenomena that would be otherwise difficult to observe empirically (e.g. Epstein, 1999; Gray, 440 

Rand, Eyal, Lewis, Hershman, & Norton, 2014; Jung et al., 2021; Schaller & Muthukrishna, 441 

2021). 442 

Although, we cannot say if the observed differences will translate into meaningful effects in the 443 

real world – this requires empirical measurement – within the modelled universe, the effects are 444 

not as small as they might seem. Indeed, the gain of biased search is ~0.119, which is around 445 

11%. Further, with regards to performance in highly competitive environments, even small 446 
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differences can prove crucial. Seemingly minor discrepancies in outcomes accumulate over time 447 

(Hardy et al., 2022) and may provide key advantages over rivals, especially in winner take all 448 

competition formats. Consider a rivalry between two firms, in which company A achieving a 449 

certain market share will drive company B out of the market entirely and vice versa. In such a 450 

scenario, real-world differences far less than 11% could prove decisive.  451 

A further important caveat concerns how the model time translates into the real-world time and 452 

whether such a translation is plausible. In other words, what is the meaning of 10, 100, or 1000 453 

search iterations in real-world settings? At this point, we cannot answer this question directly. 454 

But we can claim that a thousand iterations, or even more, may be well within many real-world 455 

time horizons over which performance plays out. To see this, consider the many decisions 456 

organizations make on a daily basis, i.e. decisions regarding personal remuneration, monetary 457 

and non-monetary rewards, product size, packaging, pricing, etc. All of these decisions seem to 458 

solve various problems and many of them take little to no time. At the same time, there is a 459 

combination of choices that will result in superior performance. Assuming that each possible 460 

combination of choices represents a single alternative in the model, by making day-to-day 461 

decisions, organizations effectively select different options. This means that a few years of 462 

routine organizational decision making can be realistically analogous to a thousand search 463 

iterations in the model. This, however, is only speculative at this point. Further empirical 464 

analyses of decision frequency in ecological contexts are needed to understand how the model 465 

time translates into the real-world time as well how organizations can use this to rebias 466 

productively. 467 

Although judicious timing is clearly critical, another practical question is how feasible it is to 468 

debias or rebias decisions. Numerous experimental interventions have been developed in an 469 

effort to achieve unbiased or at least less biased decisions, with decidedly mixed success 470 

(Kahneman, 2003, Kahneman et al., 2011; Wilson & Brekke, 1994). Some interventions do 471 

attempt to push decision makers in the opposing direction, such as the consider-the-opposite 472 

strategy (Lord, Lepper, & Preston, 1984), or exhibiting pictures of widely admired Black 473 

Americans to reduce implicit prejudice (Dasgupta & Greenwald, 2001). However, the underlying 474 

goal is typically to shift decision makers towards neutrality, in other words to debias rather than 475 

rebias. For instance, Dasgupta and Greenwald (2001) presented White American research 476 

participants with photographs of Dr. Martin Luther King Jr. in the hopes of reducing their 477 

implicit preference for White over Black, not to create a bias against Whites. With regard to 478 

rebiasing at the individual level, there is the possibility of using framing to activate alternative 479 

automatic preferences (e.g., directly opposed values both endorsed by the same person, such as 480 

group loyalty vs. merit; Chong & Druckman, 2007; Haidt, 2001). A more pragmatic and 481 

sustainable option, readily available to most organizations, is to switch the key decision makers 482 

to persons already known to hold the opposite automatic inclinations. For example, an 483 

organization that senses it is no longer reaping the benefits of its initial automatic preferences 484 

and needs to re-bias might change their leadership team to executives with directly contrary 485 

automatic biases. Re-biasing, however, would not be advisable in cases where the initial bias 486 

maps closely on to environmental regularities, as often happens in the natural world (e.g., wild 487 

animals relying on predictive cues to identify predators and prey in their natural habitat). Yet, in 488 

the turbulent environments faced by many contemporary organizations, well-timed reversals in 489 

leadership approach could prove advantageous. 490 
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Consider an example of a football team. From the perspective of the coach, choosing the right 491 

players is a standard problem that requires trial and error. While searching for an efficient 492 

solution to this problem, the coach may automatically discard some options. For example, the 493 

coach may intuitively reject those alternatives that do not favor players with whom the coach has 494 

friendly relationships. However, should this coach be removed after a time, her or his successor 495 

is likely to already hold or shortly form a different pattern of liking and disliking towards the 496 

players. A change of the key decision maker, therefore, represents a basic instrument that can 497 

lead to a change in the automatic evaluations, or rebiasing, at the organizational level. 498 

Our model indicates that the success of a debiasing or rebiasing intervention is contingent on 499 

intervening at the correct moment. But how can an individual or organization determine when 500 

that moment is, or in other words, where they are currently situated in the performance curve? 501 

We conjecture that an organization can leverage its traditional performance indicators to get a 502 

sense its performance has dropped substantially and is on a downward trajectory from earlier 503 

time periods relative to peers. If so, this suggests they could now benefit from a change in 504 

automatic decision tendencies at the top. Our results highlight to an organization that is 505 

underperforming relative to its comparative performance in the past, and decides they need a 506 

significant change, that rebiasing may benefit them more than debiasing. 507 

Previous work has pointed to the possibly positive and adaptive role of biases (e.g. Gigerenzer & 508 

Todd, 1999; Johnson & Fowler, 2011). Building on this idea, we use simulations to capture the 509 

temporal dimension long under-recognized in the experimental literature. By doing so, we 510 

analyze the lifecycles of biases and demonstrate that time is an important factor in managing 511 

them. Notably, our longitudinal pattern is distinct, but also non-contradictory, to what scholars 512 

studying fast and frugal heuristics have previously theorized. Specifically, they suggest biases 513 

that lead to errors in one-shot laboratory experiments can be adaptive in the long term in 514 

complex naturalistic environments. In contrast, our simulations capture situations in which biases 515 

are beneficial in the short term but hurt performance in the long term—unless the decision 516 

making agent rebiases itself at an opportune moment. Although this argument is substantially 517 

different, it does not contradict the existing theories. Like Gigerenzer and colleagues, we argue 518 

that biases can be adaptive over multiple choices. However, we further suggest that this effect is 519 

non-monotone and may reverse over time. Organizations—unlike individuals—possess 520 

instruments to calibrate and manipulate biases, such as changing decision-making processes, 521 

redesigning organizational structures, or simply replacing key decision makers entirely 522 

(Christensen and Knudsen, 2010). That is, organizations have structural and contextual means to 523 

alter the effective biasedness of their decisions, and therefore can proactively and profitably 524 

manage their effects. 525 
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Figure 1. Problem illustration 676 
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Search with automatic 

evaluations (see Figure 2) 
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Notes. The objective is to find option sn with the highest score, f. The immediately observable 

attribute ξ is represented by whether each option is black or white. The true score f(sn) is known only 

upon trial. 
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Figure 2. Search with automatic evaluations 678 

 679 

Notes. The letters indicate the following: (a) the end of System 1 information processing; (b) agents 680 

deliberately assess, i.e. compare to previous trials, one alternative per period.   681 

(b) 
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Figure 3. Performance of biased search relative to unbiased search  682 

 683 
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Figure 4. Mechanisms 684 
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Figure 5. Rebiased, debiased, and constantly biased search compared to unbiased search 686 
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Figure 6. Accumulated performance of rebiasing and debiasing over a period of time T 689 
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